il

Procurement Integrated
Enterprise Environment

Kibana Queries for EDA

July 2023

Prepared by

Shuk Tse

This page intentionally left blank.

Kibana Queries_for EDA.docx

June 17,2019

Table of Contents

o L 9 SN A W N -

[I S T S S S S N e
S o L N SN N A W N = O

Scope

Assumptions

Common Query Syntax Confusions

Kibana Version and Nodes

Listing Kibana Indices

Listing Kibana Aliases
Displaying Index Count and Statistics

Listing Field Mapping

Match All Query

Match Query

Prefix Query

Finding Distinct Counts

Finding Duplicate Values

GEX Ingestion Listing
GEX Ingestion History

Contract Awards

O N U i A R W W W W WD N

Mass Contract Closeout (CCO) Queries

Date Range Aggregation

p—
=]

[y
=

[y
=

PDS IPR Monthly Reports

Elasticsearch SQL

p—
V)]

il

Kibana Queries_for EDA.docx July 2023

1 Scope

This document provides an introduction to some commonly used Kibana queries for searching
EDA (Electronic Document Access) data in PIEE (Procurement Integrated Enterprise
Environment).

2

Assumptions

User has been granted Kibana access in the PIEE environment.

Kibana version is 6.6.0.

Kibana queries are run on the Dev Tools page.

This is a living document in which Kibana queries are continually being edited and
updated.

Common Query Syntax Confusions

a)

b)

When entering a search parameter, straight quotation marks should be used as they
indicate a phrase search.

Example:

If the search is for contracts.contract number="N609511700000”, you are literally
searching for the text “N609511700000” (including the curly double quotes). If the
search is for contracts.contract number="N609511700000", you are only searching
for N609511700000 (no quotes).

When running range queries on fields of type ‘date’, there is a difference between ‘now’
and ‘now/d”. ‘now’ is the current system time (in UTC) and is always resolved to Unix
timestamp in millisecond (i.e. System.currentTimeMillis()). In particular, “now” is not
affected by the time zone parameter.

Search records for the past 24 hours:

"gte": "now-1d",
Ult" : HnOWH

However, when using “now/d” (i.e. date math rounding), the date is rounded down to the
nearest day and the provided time zone will be considered.

Search records for the current day:

n.n

"gte": "now/d",
"It": "now+1d/d"

Search records for the previous day:

Kibana Queries_for EDA.docx July 2023

"gte": "now-1d/d",
"It": "now/d"

c) Understanding the ‘term’ and ‘match’ query usage is important. A ‘term’ query finds
documents based on a precise value such as a contract number, record key or ID. The
“term” query only searches for the exact term and does not analyze the search term. A
“match” query accepts text/numerics/dates, analyzes them, and constructs a query. To
search text field values, one should use the ‘match’ query.

d) Confusion often arise when using square ([]) and curly ({ }) brackets. Square brackets
surround an array and contain a comma-separated list of values. Curly brackets surround
an object and contain a separated list of name/value pairs.

NOTE: A name/value pair consist of a field name (in double quotes), followed by a
colon (:), followed by the field value.

4 Kibana Version and Nodes

a) To retrieve the Kibana version number:

GET/

b) To display Kibana nodes:

GET _cat/nodes?v

NOTE: The ‘v’ parameter turns on verbose output.

GET _cat/nodes?h=ip,port,heapPercent,name

NOTE: The ‘h’ parameter forces only those columns to appear.

S Listing Kibana Indices

a) To list all the Kibana indices in ascending order:

GET _cat/indices?v&s=index:asc

b) To list all Kibana indices which contains a wildcard phrase (e.g. *close*) and sort by the
index field :

GET _cat/indices/*close*?v&s=index

Kibana Queries_for EDA.docx July 2023

6 Listing Kibana Aliases

a) To list all the Kibana aliases in ascending order:

GET _cat/aliases?v&s=alias:asc

b) To list all aliases which contains a specific phrase (e.g. history) in ascending order:

GET _cat/aliases/*history*?v&s=alias

7 Displaying Index Count and Statistics

a) To get the count of a Kibana index (e.g. contracts):

GET contracts/ count

b) To get index level statistics for a Kibana index (e.g. contracts):

GET contracts/_stats

8 Listing Field Mapping
a) To get mapping of a Kibana index:

GET doc_history contract/ mapping

9 Match All Query

a) To view all documents for a particular Kibana index:

GET
{
"sort": {
"load_date": {"order": "desc"}
¥
"query": {
"match_all": {}
}
}

10 Match Query

a) To find a matching value(s) in a specified Kibana index:

Kibana Queries_for EDA.docx July 2023

GET

{
Hquery": {
"term": {
"contract number": "N609511700000"
}
}
}

GET

{
"query": {
"bool": {
"must": [
{"term": {"contract number": "HC10280100000"}},
{"term": {"delivery_order number": "HC10280100000"}}
]
}
}

}

11 Prefix Query

a) To list all contracts starting with ‘S0000° in the contracts index:

GET
{
"sort": [
{ "contract number": { "order" : "asc"}}
I,
"query": {
"prefix": {
"contract number": "S0000"
}
h
h

12 Finding Distinct Counts

a) To find all distinct values and their counts for a given column:

GET
{

"SiZG"I"O",

Kibana Queries_for EDA.docx July 2023

"aggs": {
"uniq_pds_status": {
"terms": {"field":"pds status"}
}
}
}

NOTE: The size key omits the results/hits (except the total).

13 Finding Duplicate Values

a) To find duplicate values and their counts for a given field:

GET
{
"size": 0,
"aggsﬂ: {
"duplicateCount": {
"terms": {
"field": "contract number",
"min_doc_count": 2

|2

"aggsﬂ: {
"duplicateDocuments": {
"top_hits": {}

}

}
}
}

NOTE: The above will return all values of the field contract number which occur in at
least two documents. Top hits aggregation will return the actual documents.

14 GEX Ingestion Listing
a) To list GEX ingestion by file status message over the last 24 hours:

GET
{
"size": 0,
Uquery": {
"range": {
"ingestion_date": {

n.n

"ote": "now-1d",

Kibana Queries_for EDA.docx July 2023

"It": "now"
}
h
¥
"aggs"™: {
"daily received": {
"terms": {
"field": "gex_file status message",
"size": 10000
}
}
}
h
NOTE: Substitute ‘gex_file status message’ with ‘gex file status’ will list GEX
ingestion by file status over the 24 hours.

b) To list GEX ingestion by file status message for failed files only:

GET
{
"size": 0,
"query": {
"bool": {
"must": [
{
"match" : {"gex file status" : "failed"}
h
]
h
¥
"aggs": {
"daily received": {
"terms": {
"field": "gex_file status message",
"size": 100
}
h
}
h
NOTE: The above “match” query clause is included in square brackets in case other
index patterns needed to be added to the same search.

Kibana Queries_for EDA.docx July 2023

15 GEX Ingestion History
a) To list GEX ingestion by file error over the last 24 hours:

GET
{
"size": 0,
"query": {
"range": {
"received date": {
"gte": "now-1d",
"It": "now"
}
h
!
"aggs": {
"daily received": {
"terms": {
"field": "file_error",
"size": 100
}
}
}

}

b) To list GEX ingestion by file error per day between a given date range:

GET

{
"query": {
"bool": {
"filter": {
"range": {
"received date": {
"gte": "01/01/2018",

Hlt": "2020"’
"format": "dd/MM/yyyy|lyyyy"
}
}
}
}
2
"aggs": {

"daily load by file error": {
"date histogram": {
"field": "received date",

Kibana Queries_for EDA.docx July 2023

"interval": "day"

¥

"aggs": {
"file error": {
"terms": {

"field": "file_error"
}

}

}

}
}

NOTE: Dates can be parsed using the format parameter specified on the date field.

c) To display all error_stacktrace that are not null:

GET
{
"query": {
"bool": {
"must_not": {
"match" : {
"error_stacktrace" : "ZZZULL"
}
s
"must": {
"exists" : {
"field": "error_stacktrace"
}
h
}
b
b

d) To get a count of how many documents are ingested between a given date range:

Kibana Queries_for EDA.docx

July 2023

GET

{
"query": {

"range": {
"ingestion_date": {
"gte": "2019/04/01",
"1t": "2019/06/30"

b
b
s
"aggs": {
"daily load by day": {
"date histogram": {
"field": "ingestion date",
"interval": "day"
b
b
b
}

16 Contract Awards

a) To list contract awards and contract attachments over the last month:

GET
{
"size": 0,
Hquery": {
"bool": {
"should": [
{
"range": {

"ingestion date": {
"gte": "now-1M/M",

Hlt": "nOW/M"
}
}
}s
{
"bool" : {
"must" : [

{ "wildcard" : {"file name" : "*.pdf*"}},
{ "term" : {"file_ingest type" : "award pdf"}}
]
}
}s

Kibana Queries_for EDA.docx July 2023

{
"bool" : {
"must_not": {
"wildcard": {"file name" : "*.csv*"}
¥
"must" : {
"term" : {"file ingest type" : "contract attachment"}
}
b
}
I,
"minimum_should match": 2
}
¥
"aggs": {
"reccount": {
"terms": {"field": "file ingest type"}
}
}
}

17 Mass Contract Closeout (CCO) Queries
a) To check the ingestion count for a specified CCO file. The count will be the total
processed records plus one for the actual spreadsheet:

GET
{
"sort": {
"received date": {"order": "desc"}
|2
n uery":{
"bool": {
"must": [
{"term": {"ingest type": "MASS CLOSEOUT"}},
{"term": {"file name": "<Excel file name> <sheet tab name>.csv"}}
]
h
}
h

NOTE: The file extension is .csv as the NiFi code automatically converts the CCO
Excel spreadsheet to a CSV file.

b) To obtain the processed (or failed) CCO count for a specific spreadsheet:

10

Kibana Queries_for EDA.docx July 2023

GET
{
"sort": {
"received date": {"order": "desc"}
s
n uery”: {
"bool": {
"must": [
{"term": {"ingest type": "MASS CLOSEOUT"}},
{"term": {"file name": "<Excel file name> <sheet tab name>.csv"}},
{"term": {"file error": "N"}}
]
b
b
}

c) To confirm the closeout status for a specific contract/DO:

GET
{
"query": {
"bool": {
"must": [
{"term": {"contract number": "SPM7LX11D9037"}},
{"term": {"delivery order number": "182W"}}
]
}
}
h
NOTE: To identify the parent-child relationship, one can match the
contract.parent_record key (child) with the contract.record key
(parent).

d) To determine the count for unique error details for a specific CCO spreadsheet:

GET
{
"size": 0,
"sort": {
"received date": {"order": "desc"}
|2
n uery":{
"bool": {
"must": [

11

Kibana Queries_for EDA.docx July 2023

{"match": {"ingest type": "MASS CLOSEOUT"}},
{"match": {"file name": "<Excel file name> <sheet tab name>.csv"}},
{"match": {"file error": "Y"}}
]
b
s
"aggregations": {
"group by error": {

"terms": {
"field": "file error detail",
"order":
{H_keyﬂ: "aSCH
b
b

h
j

NOTE: The “sum_other doc_count” value plus the remaining doc counts should equal
to the number of mass CCO errors. By default, a Terms aggregation gives the top ten
most popular terms and their counts. A sum_other doc_count field represents the
“Other” items.

e) To confirm the closed date in the contracts index:

GET
{
"size": 100,
"sort": {
"closed date": {"order": "desc"}

55
n uery":{
"term": {

"contract number delivery order number": "HC10280400000"
}
}

}

f) To confirm the doc history contract index for the closeout contract with a date
range filter:

GET
{
"size": 100,
"sort": {
"ingestion date": {"order": "desc"}

12

Kibana Queries_for EDA.docx

July 2023

2

s
n uery”: {
"bool": {
"must": [
{"bool": {
"should": [
{"term": {"contract number": "ZZZULL"}},
{"term": {"delivery order number": "/7Z7ZULL"}},
{"match": {"comments": "Closed Date Updated by <FExcel filename>.xlsx"}}
I,
"minimum_should match": |
b
s
{"range": {
"ingestion_date": {
"gt": "2019/05/01",
"Ite": "2019/05/30"

NOTES:
Null values in the contract number and delivery order number fields are mapped to

“ZZZULL”.

The comments field is case sensitive and the provided text has to match exactly.

To tie history back to the contract, use the contract.parent record key to match the
contracts.record key.

To confirm a record for each processed CCO file has been written to the
contract_close file index. The total records processed within the file will also be

displayed:

GET

{
Hquery": {
"term": {
"file name": "<Excel file name> <sheet tab name>.csv"
}
}
}

13

Kibana Queries_for EDA.docx

July 2023

18 Date Range Aggregation

a) To get a count of how many documents are ingested between a specified date range:

GET

{
Uquery": {

"range": {
"ingestion_date": {
"gte": "2019/04/01",
"1t": "2019/06/30"

}
}
¥
"aggs": {
"daily load by day": {
"date histogram": {
"field": "ingestion_date",
"interval": "day"

b
b
b
h

19 PDS IPR Monthly Reports

a) Below is an example of PDS IPR Monthly Reports for a service/agency loaded in

previous month:

GET
{

_source": ["schema_version", "pds_status" |,
"query": {
"bool": {
"must": [
{"bool": {
"should": [
{"prefix": {"issue by dodaac":"E"}},
{"prefix": {"issue by dodaac":"F"}},
{"prefix": {"issue by dodaac": "J"}}
]

"

}

minimum_should match": 1

14

Kibana Queries_for EDA.docx July 2023

s

{"range": {
"signature date": {
"gte": "now-1M/M",

"It": "now/M"
b
Iy
I,
"must_not": [
{"bool": {
"should": [
{"match": { "aco mod": "ZZZULL"}},
{"match": { "pco_mod": "ZZZULL"}}
I,
"minimum_should match": 2
Y
]
}
s

"aggregations": {
"group by pds status": {

"terms": {
"field": "pds_status",
"order":
{H_keyH: "aSCH
}
b
}

}

20 Elasticsearch SQL

Elasticsearch offers an SQL feature included in X-Pack, an Elastic Stack extension, to
execute SQL queries against Elasticsearch indices and return results in tabular format:

NOTE: The “SELECT” statement must be one continuous line without any line breaks. Also,
join or complex predicates are not supported.

a) Below are some Elasticsearch SQL examples:

POST /_xpack/sql?format=txt

{
Hquery":
" SELECT contract number ,pds_schema version, load date FROM contracts
WHERE contract number LIKE 'SPM74%' AND load_date >'2016/03/01" "

}

15

Kibana Queries_for EDA.docx July 2023

POST / xpack/sql?format=txt
{

"query":

" SELECT contract number, delivery order number, aco mod, pco_ mod FROM
conformance pds ORDER BY status change date DESC LIMIT 10"

}

POST /_xpack/sql?format=txt
{
"query":
"SELECT contract number, delivery order number, count(*)
contract_count FROM conformance pds WHERE contract number LIKE 'fa2%'
GROUP BY contract number, delivery order number HAVING count(*) > 1

}

b) To convert an SQL query into a regular Elasticsearch query:

POST /_xpack/sql/translate

{
Hquery":
"select schema_version, creation_date from conformance pds where pds_status
= 'Waiting' and (aco_mod is not null or pco_mod is not null) and (creation_date >
'2019/05/31" and creation_date < '2019/07/01') and delivery order number='Z27Z7ZULL'

"

}

16

	1 Scope
	2 Assumptions
	3 Common Query Syntax Confusions
	4 Kibana Version and Nodes
	5 Listing Kibana Indices
	6 Listing Kibana Aliases
	7 Displaying Index Count and Statistics
	8 Listing Field Mapping
	9 Match All Query
	10 Match Query
	11 Prefix Query
	12 Finding Distinct Counts
	13 Finding Duplicate Values
	14 GEX Ingestion Listing
	15 GEX Ingestion History
	16 Contract Awards
	17 Mass Contract Closeout (CCO) Queries
	18 Date Range Aggregation
	19 PDS IPR Monthly Reports
	20 Elasticsearch SQL

